ساختار پوسته در جنوب و جنوب شرق ایران براساس توابع انتقال گیرنده و پاشندگی سرعت گروه امواج ریلی

نوع مقاله : مقاله پژوهشی‌

نویسندگان

دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

در این مطالعه ساختار پوسته در جنوب و جنوب-شرق ایران با استفاده از برگردان همزمان توابع انتقال گیرنده و پاشندگی سرعت گروه امواج ریلی بررسی شد. با پردازش دادۀ دورلرز ثبت‌شده در مدت 2 سال در تعدادی از ایستگاه‌های باند پهن شبکۀ لرزه‌نگاری ملی ایران (INSN) و شبکۀ لرزه‌نگاری کشوری (ISC) با بزرگای بیشتر از 5/5، توابع انتقال گیرنده با استفاده از روش واهمامیخت تکراری در حوزۀ زمان تعیین شد. منحنی‌های پاشندگی سرعت گروه از تصاویر توموگرافی مطالعۀ مد اصلی امواج ریلی منطقه‌ای در ایران در دورۀ تناوب 10 تا 100 ثانیه گرفته شده است. با توجه به وابستگی توابع گیرنده و پاشندگی امواج سطحی به پارامترهای متفاوت و وجود خطا در الگوی ساختاری حاصل از برگردان مستقل هر کدام از این داده‌ها، تلاش گردید با برگردان همزمان این داده‌ها خطای مدل سرعتی حاصل به حداقل برسد. نتایج نشان می‌دهدکه ضخامت پوسته برای جنوب شرق زاگرس در ایستگاه‌های خلیج فارس (BNDS)، گِنو(GENO) و نیان (NIAN) به ترتیب برابر با 2±54 ، 2±54 و2± 48 کیلومتر است. در این ناحیه همگرایی پوستۀ ضخیم قاره‌ای عربی با ایران مرکزی، دلیل زیادبودن ضخامت پوسته است. در منطقۀ فرورانش مکران (ایستگاه چابهار) الگوی ساختاری حاصل شده برای تنها ایستگاه این منطقه (CHBR) نشان دهندۀ ضخامتی در حدود 28 کیلومتر برای پوسته است که با فرورانش با شیب بسیار کم پوستۀ اقیانوسی صفحۀ عربی به زیر قسمت جنوبی پوستۀ مکران مطابقت دارد. برای ناحیۀ شرق ایران عمق موهو در دو ایستگاه زاهدان (ZHSF و SZD1) برابر 40 کیلومتر است. با استفاده از مدل‌سازی مستقیم مقدار خطا در تعیین عمق 2± برآورد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Crustal structure beneath the south and southeast Iran using receiver function and Rayleigh waves group velocity dispersion

نویسندگان [English]

  • Mahdi Azizi
  • Afsane Nasrabadi
  • Mohammad Reza Sepahvand
Sciences and Modern Technologies Faculty, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

Iran is one of the seismically active areas of the world  because it is located in the Alpine-Himalayan orogenic belt, at a 1000-km-wide zone of the compression between the colliding Eurasian and Arabian continents. Studying the crust velocity structure and Moho discontinuity in Iranian plateau  is conducive to an understanding of its evolution and the tectonic history of its seismotectonic zones. Nowadays, it is indispensable to acquire sufficient and accurate data from the crust and upper mantle velocity structure or its specification.
To specify the receiver functions with an iterative approach, we made use of a two-year teleseismic data (with epicentral distance 25o-90o) recorded by six seismic stations located in the southeast Zagros (BNDS, NIAN and GENO), Makran (CHBR) and  eastern Iran (SZD1 and ZHSF) . In order to  delete high frequencies, Gaussian parameter 1.0  was used. So as to augment the signal to noise ratio, RFs were clustered in 10˚ azimuthal and less than 15˚ epicentral distance ranges. Finally, the RFs were stacked.
Receiver functions (RFs) show Earth’s local structure response to P-wave vertical arrival approximately beneath a three-component seismometer; these functions are sensitive to shear-wave velocity impedance. Depth-velocity trade-off in RFs information poses inversion non-uniqueness  issues, but a combined inversion of receiver functions and surface wave dispersion increases the uniqueness of the solution over separate inversions, further facilitating the explicit parameterization of layer thickness in the model space, providing more exact constraints  as to the crustal structure. Surface wave velocity dispersion depends more on S wave velocity than on P wave velocity, and its dependence on density is slight. In previous studies, it has been shown that it improves the inversions of receiver functions for crustal structures (Julia et al. 2000). Surface wave velocity dispersion provides information  as to the absolute seismic shear velocity, yet is relatively insensitive to sharp velocity changes. The group velocities were incorporated into our joint inversion scheme from an independent surface wave tomography study by Rham (2009). Group velocities from regional events, recorded at permanent and broadband stations, were measured for fundamental mode Rayleigh waves within 10–100s period range. The region was parameterized using a uniform, 1×1°, grid of constant slowness cells. The dispersion curve is the result of separate tomographic imaging for each period. Fundamental mode Rayleigh wave group velocities are taken from the corresponding tomographic cell containing the stations. The joint inversion of the two independent data sets was performed considering a proper combination of weighting parameters done by Herrmann and Ammon’s program (2003). Minimizing the standard error between the real and predicted data is the criterion for  the desired final model which is close to Earth’s real model.
Models resulting from joint inversion in the south-east Zagros (Hormozgan province) suggest that Moho discontinuity depths beneath BNDS, GENO and NIAN stations are about 54, 54 and 48 kilometers, respectively, while the average depth of Moho discontinuity in the region is about 52±2 kilometers. In the Makran’s seismotectonic state, the resulted models pertaining to single station in the region (CHBR, near the city of Chabahar) show that the average depth of Moho discontinuity in this region is about 28 kilometers and thickness of the sediments is about 10 km, consistent with the shallow subduction of a high-velocity oceanic crust of Arabian plate beneath the southern side of Makran. In the Flysch zone (eastern Iran), the models of the two stations (SZD1, ZHSF) show that the average depth of Moho is about 40±2 kilometers.

کلیدواژه‌ها [English]

  • Zagros
  • Makran
  • eastern flysch zone
  • receiver function
  • Joint inversion
  • depth of Moho
ابراهیم زاده اردستانی، س. و.، و عسکری، ع .، 1390، استفاده ازروش اجزاء محدود به منطور تفسیر داده‌های گرانی در دشت چابهار: مجله ژئوفیزیک ایران، 5، 101-94.
انتظار سعادت، و.، و متولی عنبران، ه.، 1394،  تحلیل ساختار پوسته و لیتوسفر با استفاده از مدلسازی مستقیم تکراری- کاربرد روی منطقه فرورانش مکران تا بلوک لوت: نشریه پژوهشهای ژئوفیزیک کاربردی، 2، 80-69.
نصرآبادی ا.، تاتار م.، و کاویانی، 1.، 1390، ساختار پوسته ایران براساس برگردان همزمان تابع انتقال گیرنده و اطلاعات پاشندگی سرعت فاز امواج ریلی: فصلنامه علوم زمین، 82، 94-83.
Abdetedal, M., Shomali, Z. H., and Gheitanchi, M. R., 2014, Crust and upper mantle structures of the Makran subduction zone in south-east Iran by seismic ambient noise tomography: Solid Earth Discussions, 6(1), 1-34.
Ammon, C. J., 1991, The isolation of receiver effects from teleseismic P waveforms: Bulletin of the Seismologycal Society of America, 81(6), 2504–2510.
Ammon, C. J., Randall, G. E., and Zandt, G., 1990, On the nonuniqueness of receive function inversions: Journal of Geophysical Research, 95, 15303-15318.
Blanc, E. J., Allen, M. B., Inger, S., and Hassani, H., 2003, Structural styles in the Zagros Simple Folded Zone iran: Journal of the Geological Society, London, 160, 401–412.
Byrne, D., and Sykes, L, 1992, Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone: Journal of Geophysical Research, 97, 449-478.
Clitheroe, G., Gudmundsson, O., Kennett, B., 2000, The crustal thickness of Australia: Journal Gophysical Reaserch, 105, 13697-13713.
Dehgani, G. A., Makris, J., 1984, The Gravity field and crustal structure of  Iran, N. Jb. GeoL,Palaont Abh, 168, 215-229.
Dehghani, G. A., and Makris, J., 1983, The gravity field and crustal structure of Iran, In: Geodynamics project (geotraverse) in Iran: Geological Survey of Iran, Rep., 51, 51-68.
Fnais, M. S., 2004, The Crustal and Upper Mantle Shear Velocity Structure of Eastern North America from the Joint Inversion of Receiver Function and Surface-Wave Dispersion: Ph. D. Thesis, Saint Louis University, 214.
Julia, J., Ammon, C. J., Herrmann, R. B., and Correig, A. M., 2000, Joint inversion of receiver function and surface-wave dispersion observations: Geophysical Journal International, 143, 99-112.
Hatzfeld, D., Tatar, M., Priestley. K., Ghafory- Ashtiany, M., 2003, Seismological Constrains on the Crustal Stracture Beneanth the Zagros Mountain Belt (Iran): Geophysical Journal International, 155, 403-410.
Herrmann, R. B., and Ammon, C. J., 2003, Computer programs in seismology, Version 3.20, Surface waves, Receiver functions and Crustal structure, Saint Louis University, Penn State Univercity.
Heidarzadeh, M., Pirooz, M.D., Zaker, N.H.,  Yalciner, A.C., 2009, Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean: Nat Hazards ,48, 229–243.
Kearey, P.,  Klepeis, K.A. and Vine, F., 2009, Global Tectonics., Third Edition., Wiley-Blackwell.
Kopp, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J. and Klaeschen, D., 2000, Structure of the Makran subduction zone from wide angle and reflection seismic data: Tectonophysics, 329, 171–191.
Langston, C. A., 1977, The effect of planar dipping structure on source and receiver responses for constant ray parameter: Bulletin of the Seismologycal Society of America, 67, 1029-1050.
Lawrence, R. D., Khan, S. H., and Nakata, T, 1992, Chaman Fault, Pakistan–Afghanistan: Annales Tectonicae Special Issue, 5 (Supplement), 196–223.
Ligorrı´a, J. P., and Ammon, C. J., 1999, Iterative deconvolution and receiver function estimation: Bulletin of the Seismologycal Society of America, 89, 1395– 1400.
Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daigni`eres, M., Nankali, H., and Van Gorp, S., 2007, Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran: Geophysical Journal International, 170, 436–440.
Mejia, J. A., 2001, Lithospheric Structure Beneath the Tibetan Plateau Using Simultaneous Inversion of Surface Wave Dispersion and Receiver Functions: Ph. D. Thesis, Saint Louis University, 298.
Mohammadi, E., Rezapour, M., Sodoudi, F., and Sadidkhouy, A., 2014, New Seismic Imaging of Some Tectonic Zones in the Iranian Plateau: Journal of the Earth and Space Physics, 40, 1-12.
Mokhtari, M., Farahbod, A., Lindholm, C., Alahyarkhani, M., and Bungum, H., 2004, An approach to a comprehensive Moho depth map and crust and upper mantle velocity model for Iran: Iranian  International Journal of Science, 5, 223-244.
Nissen, E., Tatar, M., Jackson, A. J., and Allen, B. M., 2011, New Views on Earthquake Faulting in The Zagros Fold-and-Thrust Beltof Iran: Geophysical Journal International, 186, 928–944.
Pasyanos, M. E., 2005, A variable resolution surface wave dispersion study of Eurasia, North Africa, and surrounding regions: Journal of Geophysical Research, 110, 1-22.
Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J., and Mokhtari, M., 2006, Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran): Geophysical Journal International, 166, 227–237.
Rham, D., 2009, The crustal structure of the Middle East. Ph.D. thesis. University of Cambridge Library, Cambridge, UK.
Shaw Champion, M. E., White , N. J., Jones, S. M., and Priestley, K. F., 2006, Crustal velocity structure of the British Isles; a comparison of receiver functions and wide-angle seismic data: Geophysical Journal International, 166, 795-813.
Schluter, H. U., Prexl, A., Gaedicke, C., Roeser, H., Reichert, C., Meyer, H. and von Daniels, C., 2002, The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes: Marine Geology, 185, 219-232.
Tatar, M. R., and Nasrabadi, A., 2013. Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion: Journal of Seismology, 17, 1321-1337.
Tirrul, R., Bell, I. R., Griffis, R. J., and Camp, V. E., 1983, The Sistan Suture Zone of eastern Iran: Geological Society of America Bulletin, 94, 134–150.
Vernant, P,. Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny. C., Masson, F., Nankali, H., Martinod. J., Ashtiani, A., Bayer, R., Tavakoli. F., and Ch´ery, J., 2004, Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman: Geophysical Journal International, 157, 381-398.