تحلیل پس‌لرزه‌های زمین‌لرزه 11 فروردین 1385 سیلاخور (بزرگای گشتاوری 1/6) براساس داده‌‌‌‌های ثبت شده در شبکه لرزه‌نگاری موقت محلی

نوع مقاله : مقاله پژوهشی‌

نویسندگان

1 دانشگاه تحصیلات تکمیلی صنعتی کرمان، ایران

2 پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، ایران

چکیده

پس از وقوع زمین‌لرزه 11 فروردین 1385 سیلاخور با بزرگای گشتاوری 1/6، شبکه لرزه‌نگاری موقتی متشکل از 10 ایستگاه ازسوی پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله برای ثبت پس‌لرزه‌های این زمین‌لرزه در منطقه نصب شد. تحلیل پس‌لرزه‌های ثبت شده در این شبکه، زون گسلی نسبتا پهن با روند کلی جنوب شرق- شمال غرب در راستای گسل اصلی عهد‌حاضر را نشان می‌دهد. تمرکز وقایع در عمق‌های بین 4 تا 11 کیلومتر بیانگر قابلیت شکنندگی پوسته در عمق‌های کم در این بخش از زاگرس است. نیم‌رخ‌‌های عمقی عمود بر گسل اصلی عهد‌حاضر، نشان‌دهنده شیب غالب روندهای پس‌لرزه‌ها به سمت شمال شرق است. توزیع مکانی ضریب b نشان‌‌دهنده کمتر بودن مقادیر این ضریب در بخش شمالی زون پس‌لرزه‌ها است که می‌تواند شاهدی بر تجمع تنش بیشتر در این منطقه نسبت به بخش‌های جنوبی باشد.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Aftershock analysis of the March 31, 2006 Silakhur Earthquake, Mw 6.1, using local data recorded by temporary seismic network

نویسندگان [English]

  • Mohammad Reza Sepahvand 1
  • Farzam Yaminifard 2
  • Gholam Javan Doloie 2
چکیده [English]

The Zagros mountain belt is approximately 1500 km long, 250–400 km wide, and runs from eastern Turkey, where it connects to the North and East Anatolian faults, to Oman Gulf, where it dies out at Makran subduction zone. The Zagros Mountains were formed by closure of the Neotethys Ocean and collision of Central Iran and Arabia plates. GPS studies estimate a convergence rate of 22 mm/yr between Arabian and Eurasian plates and the Zagros accommodates about 6.5 ± 2 mm/yr of the overall shortening in Iran. However this rate is not constant along the Zagros and increases from 4.5 mm/yr in the northwest to 9 mm/yr in the southeast. Changes in the rate and direction of convergence across the Zagros cause changes in its strike and diversity of the deformation mechanism.
The Main Recent Fault (MRF) and the Main Zagros Reverse Fault (MZRF) are located in the northwest and northeast of the Zagros collision zone, respectively, in a suture zone between central Iran and the Arabian plate. Based on GPS and seismology studies, the MZRF is presently inactive. On the contrary, as evidenced by high seismicity and the occurrence of earthquakes with magnitudes as large as 7, like 1909 Doroud Earthquake, the MRF is one the major active strike-slip faults in the Middle East. Geological studies on the MRF fault have identified the fault segmentation and the existence of pull-apart basins. The Main Recent Fault strikes NW–SE and can be traced as a narrow, linear series of fault segments from near the Turkey–Iran border at 37N for over 800 km to the SE. Based on strain partitioning theory, the strike-slip MRF fault is a response to a horizontal component of oblique convergence between Arabian and Eurasian plates and Zagros’s reverse fold belt accommodates the vertical component of this convergence.
Seismological studies based on the teleseismic data have limited the location accuracy because they rely on global velocity models. Therefore, microearthquake local studies complement the teleseismic information because they locate seismic events with an accuracy of a few kilometers which is an order of magnitude better than teleseismic locations.
The 2006 Silakhur earthquake with a magnitude of 6.1 and its aftershocks recorded by a local seismic network provide a unique opportunity for a high resolution study of the Doroud section of the MRF. The results of the aftershock analysis are presented in this paper.
After occurring March 31, 2006 Silakhur Earthquake, Mw 6.1, a temporary seismic network including 10 stations was installed by International Institute of the Earthquake Engineering and Seismology for nearly two months. An aftershock analysis revealed a wide zone of the aftershocks trending southeast northwest. Another trend in east-west direction was deduced from the epicentral distribution of the aftershocks in the west of the Boroujerd. Depth distribution of the aftershocks showed that the majority of the aftershocks located in 4-11 km depth range, verified the brittle crust uppermost layer in this part of the Zagros. Depth profile showed the northeast trending of the aftershocks. The spatial distribution of the b value showed low values in the northern part of the aftershock zone that its reason could be the higher stress concentration in this region relative to the southern part.
 

کلیدواژه‌ها [English]

  • Aftershock
  • Silakhur
  • Zagros
  • b value
  • temporary seismological network
یمینی‌فرد، ف، عباسی، م. ر. و سپهوند، م. ر.، 1389، مطالعه لرزه‌‌زمین‌‌ساخت و ساختار سرعتی پوسته در منطقه لرستان به کمک داده‌‌های ثبت شده در یک شبکه لرزه‌نگاری موقت: گزارش پروژه پژوهشی، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.
Aktar, M., Ozalaybey, S., Ergin, M., Karabulut, H., Bouin, M. P., Tapirdamaz, C., Bicmen, F., Yoruk, A., and Bouchon, M., 2004, Spatial variation of aftershock activity across the rupture zone of the 17 August 1999 Izmit earthquake, Turkey: Tectonophysics, 391, 325-334.
Ambraseys, N. N., and Melville, C. P., 1982, A History of Persian Earthquakes, Cambridge University Press, 219 p.
Authemayou, C., Bellier, O., Chardon, D., Benedetti, L., Malekzade, L., Claude, C., Angeletti, B., Shabanian, E. and Abbassi, M. R., 2009, Quaternary slip rates of the Kazerun and the Main Recent Faults: Active strike slip partitioning in the Zagros fold and thrust belt: Geophys. J. Int., 178, 524–540.
Copley, A., Jackson, J., 2006, Active tectonics of the Turkish–Iranian Plateau, Tectonics 2, 1–19. doi:10.1029/2005TC001906.
Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., and Priestley, K., 2006, Relocation and assessment of seismicity in the Iran Region: Geophys. J. Int., 167, 761-778.
Gorgun, E., Zang, A., Bohnhoff, M., Milkereit, C., and Drese, G, 2009, Analysis of Izmit aftershocks 25 days before the November 12th 1999 Duzce earthquake: Tectonophysics, 474, 507-515.
Hatzfeld, D., Molnar, P., 2010, Comparisons of the kinematics and deep structure of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications: Rev. of Geophysics, 48, 304-351.
Lienert, B. R. E., Berg, E., and Frazer, L. N., 1986, Hypocenter: An earthquake location method using centered, scaled, and adaptively least squares. Bull. Seism. Soc. Am., 76, 771-783.
Malekzade, Z., Abbassi, M. R., Bellier, O., and Authemayou, C., 2007, Strain partitioning in West-Central Zagros fold and thrust belt: Implication for seismic hazard analysis: Journal of Seismology and Earthquake Engineering, 9(3), 85-98.
Peyret, M., Rolandone, F., Dominguez, S., Djamour, Y, and Meyr, B, 2008, Source model for the Mw 6.1, 31 March 2006, Chalan-Chulan Earthquake (Iran) from InSAR: Terra Nova, 20, 126-133.
Talebian, M., and Jackson, J, 2002, Offset on the Main Recent Fault of the NW Iran and implications for the late Cenozoic tectonics of the Arabia Eurasia collision zone: Geophys. J. Int., 150, 422 – 439.
Tatar, M., Hatzfeld, D., and Ghafory-Ashtiany, M., 2004, Tectonics of the Central Zagros (Iran) deduced from microearthquakes seismicity: Geophys. J. Int., 156, 255-266.
Tchalenko, J., and Braud, J, 1974, Seismicity and structure of the Zagros (Iran), the main recent fault between 33 and 35º N, Phil. Trans. Roy. Soc. London, 277, 1-25.
Walpersdorf, A., Hatzfeld, D., Nankali, H., Tavakoli, F., Nilforoushan, F., Tatar, M., Vernant, P., Chéry, J., and Masson, F., 2006, Difference in the GPS deformation pattern of North and Central Zagros (Iran ): Geophys. J. Int., 167, 1077-1088.
Wiemer, S., and McNutt, S., 1997, Variations in frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska: Geophys. Res. Lett., 24, 189-192.
Wiemer, S., Mcnutt, S. R., and Wyss, M., 1998, Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley Caldera, California: Geophys. J. Int., 134, 409-421.
Wyss, M., Schrolemmer, D., and Wiemer, S., 2000, Mapping asperities by minima of local recurrence time: The San Jacinto-Elsinore fault zones. J. Geophys. Res., 105, 7829-7844.
Wyss, M., Shimazaki, K., and Wiemer, S., 1997, Mapping active magma chambers by b-values beneath the off-Ito volcano, Japan. J.: Geophys, 102, 20413-20422.
Wyss, M., Wiemer, S., and Zaniga, R, 2001, ZMAP: a tool for analysis of seismicity patterns. Typical application and uses: a cookbook.
Yamini-Fard, F., Hatzfeld, D., Tatar, M., and Mokhtari, M., 2006, Microseismicity on the Kazerun fault system (Iran): Evidence of a strike-slip shear zone and a thick crust: Geophys, 166(1), 186-196.