الگوهای همدیدی در دوران همراه و بدون بارش همزمان با چیرگی فاز 1 دیده :MJO مطالعه موردی جنوب باختری ایران

نوع مقاله : مقاله پژوهشی‌

نویسندگان

دانشکده کشاورزی، دانشگاه شیراز

چکیده

پدیده مادن–جولیان ( MJO) در شمار پدیده‌های مهم جوی-اقیانوسی در گستره‌های استوایی اقیانوس هند و آرام است. فاز 1 MGO در پیکر یک سامانه بارش همرفتی در پهنه باختری اقیانوس هند استوایی پدیدار می‌گردد. پس از این، سامانه بارش‌زا در پیکر فازهای 2 تا 8 بخش‌های مرکزی اقیانوس آرام به پیشروی خاورسوی خود ادامه می‌دهد. پژوهش‌های پیشین نشان‌دهنده آن است که در هنگام رخداد فاز 1 MGO بخش بزرگی از کشور به‌ویژه گستره جنوب باختری آن با افزایش بارش روبرو می‌شود. با این همه، رخداد این فاز همیشه با بارش زایی روبرو نیست که این امر موجب خطا در پیش‌بینی بارش می‌شود. در این پژوهش در راستای کاهش خطای پیش‌بینی، سامانه‌های با ظرفیت بارش‌زایی به دو بخش سامانه‌های همراه با بارش و سامانه‌های بدون بارش تقسیم و ویژگی‌های آنها با یکدیگر مقایسه شد. این مقایسه در روی خشکی‌ها و نیز پهنه دو اقیانوس هند و آرام برای ماه‌های سرد دوران 1975-2012به انجام رسید. از آنجا که بیشتر بارش‌ها هنگامی رخ می‌دهد که اندازه شاخص MJO بزرگتر از 1 باشد، همه ارزیابی‌ها برای چنین دورانی به انجام رسید. روشن شد که نزدیک به 8 تا 15 درصد از بارش جنوب باختری ایران در فاز MJO 1 رخ می‌دهد. ارزیابی‌ها نشان داد که برای کاهش خطای پیش‌بینی، باید افزون بر اندازه شاخص، جایگاه جغرافیایی فعالیت‌های همرفتی در دو اقیانوس هند و آرام نیز پایش گردد. چنانچه سامانه بارش‌زا در پهنه استوایی اقیانوس هند در محدوده کناره آفریقا تا طول جغرافیایی 60 درجه شرقی و بر روی اقیانوس آرام در حوزه 160تا 140درجه باختری و 10تا 20 درجه جنوبی متمرکز باشد، و همچنین میانگین میزان انحراف از میانگین بارش بیشتر از 1میلیمتر بر روز باشد، احتمال بارش‌زایی در جنوب باختری ایران افزایش چشمگیری پیدا می‌کند. در این دوران در آب‌های شمال باختری استرالیا و جنوب اندونزی هوا صاف می‌شود. در دوران بارش‌زایی بی‌هنجاری سرعت بادهای شرقی بر روی نواحی باختری اقیانوس هند و نیز بادهای جنوبی بر روی شبه جزیره عربستان تا چهار برابر بیشتر از دوران بدون بارش است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

A synoptic-scale analysis of the episodes with and without precipitation in the southwest of Iran during the phase 1 of the MJO

نویسندگان [English]

  • Mohammad Jafar Nazemosadat
  • Arezo Rostampour
  • Kokab Shahgholian
چکیده [English]

The Madden–Julian oscillation (MJO) is a large-scale coupling between atmospheric circulation and tropical deep convection explaining a large part of the intra-seasonal (30–90 day) variability in the tropical and extratropical atmospheres. Rather than being a standing pattern like the El Niño–Southern Oscillation (ENSO), the MJO is an oceanic–atmospheric moving pattern that propagates eastward at approximately 4 to 8 ms−1 , through the atmosphere above the warm parts of the Indian and Pacific oceans. Due to its quasi-cyclic pattern, the MJO is known as the 30–60 day oscillation, 30–60 day wave, or intra-seasonal oscillation. The oscillation is characterized by an eastward progression of large regions of both enhanced and suppressed tropical precipitation, observed mainly over equatorial parts of the Indian and Pacific Oceans. The anomalous convective precipitation is firstly triggered over the western Indian Ocean, and persists as it propagates over the warm ocean waters of the western and central tropical Pacific. Wheeler and Hendon (2004) categorized the whole cycle of the MJO into 8 phases namely phase 1 to 8. Phase 1 of the MJO that is the theme of this study, signifies the spells for which the convective activity is mainly centered over the western parts of the Indian Ocean equator. It has been previously reported that the occurrence of the MJO phase 1 improves the probability of precipitation event in southwestern Iran (Nazemosadat and Ghaedamini, 2010). In spite of these findings, the reasons of frequent clear sky and shiny days during this phase were not yet resolved. The aim of this study was to compare the oceanic and atmospheric features of the phase 1 for the spells that the incidence of this phase is concurrence with or without precipitation in the southwest of Iran. This analysis is beneficial for improving the MJO-based precipitation and climate forecast over this area. To accomplish this task, the MJO amplitudes during phase 1 were extracted for all days during the 1975–2012 period. Among the selected dates, those days with amplitudes greater than 1 were assigned as the strong MJO events. These MJO events were then divided into two different parts comprising the events with and without pervasive precipitation in southwestern Iran. According to the adopted definition, the pervasive precipitation occurred when at least five out of nine considered stations over the study area received more than 1.0 mm precipitation. For the pervasive precipitating dates, the MJO-precipitation composites were constructed for each individual station. Similar composites were also constructed for precipitation, vector wind, outgoing long-wave radiation (OLR) and vapor flux over the Middle Eastern region and tropical parts of the Indian and Pacific Oceans using the ESRL–NOAA composite facilities. Similar compositing procedure was also performed for the no-precipitating dates to investigate atmospheric condition during such spells.From about 8% to 15% of the November–April precipitation in the southwest of Iran was found to be associated with the periods that the MJO was centered in its phase1. It was concluded that, for improving the MJO-based precipitation forecast in southwest of Iran, not only the phase number and amplitude size of the MJO index, but the position and intensity of convective activities as well as the atmospheric circulations over the Indian and the Pacific Oceans should also be analyzed. In phase 1, precipitation event in southwest of Iran is usually associated with the state of convective activities and their relevant airflows over some areas extended from equatorial parts of east Africa up to the equatorial areas of the Indian Ocean around 90° E. In general, precipitation occurs over the study area if the core center of these activities locate around 60° E. For such situation precipitation anomaly over this area is greater than 1.5 mm/day and the OLR anomalies are less than −20W m−2 or lower. Coincidence with the Indian Ocean equatorial area, precipitation event over the study area in Iran is harmonized with the enhancement of convective activities over tropical parts of the Pacific Ocean for the areas between 160° W to 140° W and 10° S to 20° S. Compared to non-precipitating periods of phase 1, easterly or southerly wind enhances by about four times over the eastern parts of the Indian Ocean, tropical parts of North Africa and the Arabian Peninsula during the precipitating spells. The Persian Gulf was found to play an influential role for re-moisturizing the southerly airflows crossing this water body during the precipitating dates.
 

کلیدواژه‌ها [English]

  • Iran
  • MJO
  • Precipitation
  • Indian Ocean
  • Persian Gulf
احمدی‌گیوی، ف.، محب‌الحجه ع.ر.، و غضنفری ا.، 1388، مطالعه توزیع رطوبت و بارش بر روی ایران در زمستان 1388 و ارتباط احتمالی آن با همرفت در اقیانوس هند: دوازدهمین کنفرانس دینامیک شاره‌ها، اردیبهشت 1388.
خسروی، م.، 1384، بررسی الگوهای دورپیوند بر خشکسالی‌های فراگیر زمستانه‌ی استان سیستان و بلوچستان: مجله جغرافیا و توسعه‌ی ناحیه‌ای، 5، 4-27.
خوش‌اخلاق، ف.، قنبری، ن.، و معصوم‌پور سماکوش، ج.، 1387، مطالعه اثرات اطلس شمالی بر رژیم بارش و دمای سواحل جنوبی دریای خزر: مجله پژوهش‌های جغرافیای طبیعی، 66، 56-70.
قائدامینی اسدآبادی، ح.، و ناظم السادات، م. ج.، 1391، ارزیابی نشان پدیده نوسان‌های مادن-جولیان بر رخداد بارش‌های روزانه استان‌های سیستان و بلوچستان و فارس: نشریه آب و خاک، 6، 1372-1383.
ناظم السادات، م. ج.، 1387، گزارش نهایی طرح ارزیابی پیش‌بینی دوران‌های کم بارش و تر در ایران با استفاده از نوسانات مادن-جولیان (به ویژه در جنوب ایران) : ارائه شده به شرکت سهامی مدیریت منابع آب.
ناظم السادات، م. ج.، و قاسمی، ا. ر.، 1383، تأثیر نوسان‌های دمای سطح آب دریای خزر بر بارش فصول زمستان و بهار: مجله علوم و فنون کشاورزی و منابع طبیعی، 8(4)، 1-14.
Barlow, M., Wheeler, M., Lyon, B., and Cullen, H., 2005, Modulation of daily precipitation over southwest Asia by the Madden–Julian Oscillation: Mon. Wea. Rev., 133, 3579–3594.
Donald, A., Meinke, H., Power, B., Wheeler, M., and Ribbe, J., 2004, Forecasting with the Madden–Julian Oscillation and the applications for risk management: Paper presented at the Proceedings of the 4th International Crop Science Congress (ICSC 2004).
Hoell, A., Barlow, M., and Saini, R., 2012, The laeding pattern of intraseasonal and interannual Indian Ocean precipitation vaiability and its relationship with Asian circulation during the Boreal cold season: J. Climate, 25, 7509–7526.
Hoell, A., Barlow, M., and Saini, R., 2013, Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnection: J. Climate, 26, 8850–8867.
Hung, C.-W., Lin, H.-J., and Hsu, H.-H., 2014, Madden-Julian Oscillation and the winter rainfall in Taiwan: J. Climate, 27, 4521–4530.
Jia, X., Chen, L., Ren, F., and Li, C., 2011, Impacts of the MJO on winter rainfall and circulation in China: Advances in Atmospheric Sciences, 28, 521–533.
Jones, C., and Carvalho, L., 2014, Sensitivity to Madden–Julian Oscillation variations on heavy precipitation over the contiguous United States: Atmospheric Research, 147, 10–26.
Madden, R. A., and Julian, P. R., 1971, Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific: J. Atmos. Sci., 28, 702–708.
Madden, R. A., and Julian, P. R., 1994, Observations of the 40–50-day tropical oscillation — A review: Mon. Wea. Rev., 122, 814–837.
Nazemosadat, M., and Ghaedamini, H., 2010, On the relationships between the MaddenJulian Oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmosphericcirculation analysis: J. Climate, 23, 887–904.
Pai, D. S., Bhate, J., Sreejith, O. P., and Hatwar, H. R., 2011, Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India: Climate Dynamics, 36, 41–55.
Wheeler, M. C., and Hendon, H. H., 2004, An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction: Mon. Wea. Rev., 132, 1917–1932.
Wheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H., and Donald, A., 2009, Impacts of the Madden–Julian Oscillation on Australian rainfall and circulation: J. Climate, 22, 1482–1498.
Zhang, C., 2013, Madden–Julian Oscillation: Bridging weather and climate: Bulletin of the American Meteorological Society, 9, 1849–1870.
Zhou, S., L’Heureux, M., Weaver, S., and Kumar, A., 2012, A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States: Climate Dynamics, 38, 1459–1471.