بهبود مدل‌سازی پیشرو داده‌‌‌های رادار نفوذی به زمین (GPR)به روش عددی تفاضل متناهی

نویسندگان

چکیده

در تحقیق حاضر از بین روش‌‌‌‌های عددی گوناگون دردسترس، از روش تفاضل متناهی دوبُعدی، به علت سادگی درک مفاهیم، انعطاف‌پذیری، قابلیت شبیه‌سازی و مدل‌سازی محیط­‌‌های پیچیده و قابل‌قبول بودن پاسخ­‌‌های آن در موارد به‌کار رفته، برای شبیه‌سازی رفتار حاکم بر انتشار امواج الکترومغناطیسی (EM) در روش رادار نفوذی به زمین (GPR)، از راه حل معادله‌های ماکسول و شرایط مرزی مناسب، استفاده شده است. روش تفاضل متناهی در حوزه زمان، علی‌رغم فایده‌های بسیار، دارای نقاط ضعفی نیز می­باشد ازجمله آنکه شبیه‌سازی مدل‌‌‌‌های گوناگون به‌ویژه در محیط‌‌‌های با گذردهی دی­الکتریک زیاد، حتی با رایانه‌های نوین پُرسرعت نیز بسیار زمان‌بر است. لذا در تحقیق حاضر، این نقص نیز با اِعمال رویکردی جدید، بهبود یافت.
    هدف از مدل‌سازی پیشرو پاسخ GPRیک ساختار زیرسطحی شناخته شده، بررسی تأثیر ویژگی‌‌‌‌های الکتریکی و درنتیجه سنگ­شناختی یا آب­شناختی آن ساختار روی پاسخ‌های GPRبرداشت شده از آن است بنابراین مدل‌سازی­‌‌های عددی پاسخ GPRمدل‌‌‌‌های مصنوعی با هندسه مشخص، می­توانند در تعیین ارتباط بین ویژگی‌‌‌‌‌های زیرسطحی و داده­‌‌های GPR، مفید واقع شوند. در این تحقیق برای مدل‌سازی داده­‌‌های GPRاز ثبت تپ (پالس)­‌‌های بازتاب یافته به سطح (که فرستنده و گیرنده هر دو، روی سطح زمین قرار دارند) در مُد TMاستفاده شده است؛ به‌طوری‌که آنتن‌ها عمود بر صفحه برداشت (x-z) توجیه شده­اند. به علت مدل‌سازی دوبُعدی، منبع و گیرنده به‌صورت اجزای خطی هستند که عمود بر صفحه برداشت تا بی­نهایت گسترش می­یابند؛ با این تفاسیر مدل‌سازی دوبُعدی صورت گرفته، قادر به مدل‌سازی بسیاری از ویژگی­‌‌های بازتاب‌‌های سامانه‌‌های GPRاست. نظر به اینکه فرآیند مدل‌سازی وارون داده­‌‌های GPR، نیازمند یک هسته مدل‌سازی پیشرو پُرسرعت است و ازآنجایی­که پاسخ GPRاغلبِ هدف‌های مدفون در زیر زمین در نگاشت­‌‌های راداری حاصله که متشکل از تعداد زیادی تریس هستند، به‌صورت یک رخداد شبه­هذلولی است، لذا در این تحقیق با استفاده از جابه‌جایی زمانی تریس‌ها در الگو‌‌های پاسخ GPRو تبدیل فوریه آنها در حوزه بسامدی و سپس درون‌یابی یک_بعدی در فاصله بین هر دو تریس متوالی، قدرت تفکیک جانبی داده­ها را در امتداد پیمایش نیم‌رُخ، افزایش می‌دهد و درنتیجه پاسخ‌‌‌های با تفکیک­پذیری بیشتر، حاصل می‌شود. همچنین با بکارگیری چنین روشی زمان محاسباتی شبیه­سازی‌ها، به‌طور قابل‌توجهی تا بیش از 5/12 برابر نسبت به حالتبهبود نیافته، کاهش می­یابد. به‌منظور راستی‌آزمایی الگوریتم بهبودیافته، پاسخ GPRشیء‌های مصنوعی نظیر استوانه افقی منفرد، منشور مربعی دوبُعدی و نیز استوانه­های افقی جفت، مدل‌سازی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Improving Ground Penetrating Radar (GPR) forward modeling approach using the numerical finite difference method

نویسندگان [English]

  • Reza Ahmadi
  • Nader Fathianpour
  • Gholam-Hossain Norouzi
چکیده [English]

The behaviour of Ground Penetrating Radar (GPR) electromagnetic field can be simulated using Maxwell’s equations and associated boundary conditions. So far a number of numerical methods for modeling GPR data have been proposed including the popular Time Domain Finite Difference (TDFD) technique. The popularity of TDFD is mainly due to being relatively simple to implement, its high flexibility and capability to simulate complex subsurface geology. Also, the TDFD approach is not only conceptually accurate for complex geological models but also enables us to design realistic antenna and to study physical electromagnetic phenomena such as dispersion in electrical properties. Despite having these advantages, the finite difference method has pitfalls such as becoming very time consuming in simulating the most common media especially with high dielectric permittivity causing the forward modeling process to become very time consuming even by modern high-speed computers.
Synthetic GPR responses are useful for predicting expected GPR data over known geometries such as horizontal cylinders and prisms. The GPR data and subsurface lithological and hydrogeological properties are related through a numerical forward modeling engine. 
Therefore, the GPR forward modeling engine can transform the subsurface electrical properties into expected GPR responses which in turn can be used for optimizing data acquisition procedures on pre-defined subsurface targets. Since any efficient inversion routine requires a fast forward modeling engine, this study aimed the development of a fast forward modeling algorithm capable of being implemented in any inversion routine.To have efficient numerical forward modeling algorithm, we have adapted a leap-frog, staggered-grid approach introduced by Yee, which incorporates offsetting the electric and magnetic field components in both space and time in such a way that the finite difference approximations of the governing partial derivatives in each equation are centered on the same spatiotemporal location.
Obviously 2-D modeling is limited and cannot fully account for antenna behaviour and out-of-plane variations in material properties; however, many important features common to most GPR responses can be identified via employing a computationally cost effective 2D algorithm.
In the current study, the patterns of GPR responses that are well known to be hyperbola in shape are used as leading models in order to reduce the execution time. A GPR system collects the reflected pulses coming from different depths in the form of traces which when gathered along with a profile, they make a GPR section called radargram. In general, the simulated GPR traces of common reflected objects are time shifted like the Normal MoveOut (NMO) traces encountered in seismic reflection responses. This property suggests the application of Fourier transform to the GPR traces and the use of time shifting property of such transformation to interpolate traces between the adjusted traces in frequency domain. Therefore, the lateral resolution of GPR traces computed along with any profile is enhanced using a linear interpolation in the Fourier domain resulting in an increased speed of the forward modeling algorithm. Selecting the minimum lateral trace to trace interval with the appropriate sampling frequency of the signal, prevent any aliasing to occur. It is shown that such methodology can significantly decrease the computing time by more than 12.5 times.

کلیدواژه‌ها [English]

  • Ground Penetrating Radar(GPR)
  • forwardmodeling
  • finite difference
  • Resolution
  • Fourier Transform
  • computationaltime