ارزیابی نشانه‌های تغییر اقلیم در پهنه شمال غربی اقیانوس هند: واکاوی روند دمای سطح آب دریا در دوره 1950-2009

نویسندگان

چکیده

نوسان‌ها و روند دمای سطح آب دریاها (Sea Surface Temperature, SST) یکی از نمایه‌های ارزشمند و پایه‌ای در ارزیابی بر همکنش دریا- جوّ و خشکی است. یافته‌‌های شمار فراوانی از پژوهش‌ها نشان­دهنده آن است که نوسان دمای سطح آب اقیانوس‌‌ها به گونه‌ای معنی‌دار بر افزایش و کاهش بارش و دما در پهنه‌‌های کناره‌‌ای و دوردست سایه افکنده است. در این پژوهش روند نوسان‌های ماهانه SSTدر گستره شمال غربی اقیانوس هند در دوره شصت‌ساله 1950-2009 بررسی شد. گستره آبی مورد ارزیابی  دربرگیرنده 30 گره °2×°2 عرضی و طولی است که در گستره آبی خلیج فارس، دریای عمان و دریای عرب جای گرفته‌اند. این داده‌ها از بانک داده‌های سازمان  NOAAبیرون آورده شدند. با به‌کارگیری روش رگرسیون خطی اندازه روند SST(شیب خط رگرسیون) برآورد شد. با بهره‌‌گیری از آزمون‌‌‌های مناسب پارامتری و ناپارامتری، همسانی یا ناهمسانی شیب در فصل‌‌های چهارگانه بررسی شد. افزون بر این، این آزمون‌‌ها برای ارزیابی همسانی شیب خط رگرسیون در پهنه‌های جغرافیایی دریایی نیز به کار گرفته شد. یافته‌ها نشان داد در همه فصل‌های سال، داده‌های SSTدر پهنه شمال غربی اقیانوس هند دارای روند افزایشی معنی‌دار است. در دوره شصت‌ساله مورد بررسی، دمای این 30 گره به‌‌طور متوسط نزدیک به 61/0 درجه سلسیوس افزایش یافته است. افزون بر این، در بیشتر پهنه‌ها آهنگ افزایش SSTپاییزه و زمستانه، به‌‌ترتیب بیشترین و کمترین اندازه بود. هنگامی که دوره شصت‌ساله پژوهشی به سه دوره بیست‌ساله پیاپی بخش شد، روند افزایش SSTدر این دوره‌‌های سه‌گانه با یکدیگر ناسازگاری‌های معنی‌‌داری داشت. در دو فصل زمستان و بهار، بزرگ‌ترین اندازه روند افزایشی در بیست‌ساله سوم (1990-2009) رخ داده است. این در حالی است که برای دو فصل تابستان و پاییز، بیشترین آهنگ افزایش دمای سطح آب در دوره 1950-1969 دیده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the climate change diagnostics over the north western parts of the Indian Ocean: The SST analysis for the period 1950-2009

نویسندگان [English]

  • Seyed Mohamad Jaafar Nazem Alsadat
  • Habibollah Ghaedamini
  • Marzeih Tavakoli
چکیده [English]

Investigating the trend and fluctuations of the sea surface temperature (SST) data are critically important for understanding the interactions between the oceans, the atmosphere and the land in various spatial and temporal timescales. Such analysis of the SST time-series is also essential for the detection and modeling of climate change. The increase in the global SST is one of the primary physical impacts of climate change. Some recent investigations have shown that the fluctuations in SST data over the Persian Gulf and the western parts of the Indian Ocean regulates Iran's precipitation particularly over the southern districts. The present study was, therefore, motivated to analyze the trends in the SST data over the northwestern parts of the Indian Ocean waters containing 30 nodes of  by  (longitude and latitude) grids for the period 1950-2009. These grids were spread over various parts of the Persian Gulf and Arabian Sea, the water bodied between  to  North and between  to  East. The monthly SST data was gratefully extracted from the database of the physical sciences division of the National Oceanic and Atmospheric Administration (NOAA). According to their geographical positions, these 30 grids were classified into three groups, namely, the Persian Gulf, coastal areas (i.e., the grids off the coasts by ) and the Arabian Sea regions. Since the SST time-series generally have a normal distribution, a linear regression analysis was applied to detect the trend in the constructed time series for the classified regions in annual and seasonal timescales. The analysis was conducted by each grid individually as well as by averaging the SST data over each of the three mentioned zones. The seasonal time series were constructed by averaging monthly data so that winter, spring, summer and autumn consisted of the months Jan-March, April-June, July-Sep and Oct-Dec, respectively.  The 60 years of the study period were also divided into three consecutive 20 years to assess the consistency in trend-line slope over time. The parametric statistical tests were used to investigate whether the detected trends are significant
    The study revealed that during the 60 years of the study period, the SST of these 30 grids has inclusively increased by about 0.61°C. It is in general agreement with Deser et al. (2010) that reported the magnitude of the global SST trend during the 1900-2008 period  as approximately 0.4–1.0°C per century in the tropics and subtropics and 1.2–1.6°C per century at higher latitudes. The amount of such increase for the Persian Gulf, coastal areas and the Arabian Sea was 0.5°C, 0.65°C and 0.63°C, respectively.  Comparing with other seasons, for the large regions of the three classified zones the increasing trend was the greatest and the least for autumn and winter, respectively. While the spring and summer’s SST were increased by about 0.5°C during the last six decades, the corresponding increases for winter and autumn were found to be 0.60°C and 0.85°C, respectively. The autumnal upward trend was significantly greater than other seasons for the Persian Gulf and the coastal regions. However, the upward trend is statistically identical during autumn and winter over the Arabian Sea areas. With the exception of the spring, the slopes of the trend-lines were different between the Persian Gulf, coastal areas and the Arabian Sea during the other seasons.
    When the considered 60 year period was divided into three consecutive 20 year periods, the trend exhibited a variety of differences between these new shorter data sets. While the spring and wintertime SSTs did not exhibit any significant trend during either 1950-1969 or 1970-1989 periods, the upward trend was significant for the period 1990-2009. In contrast to winter and spring, most of the considered SST time series (excluding the Persian Gulf data) were significantly warmed up during 1950-1969. No significant trend was observed for the period 1970-1989 on a seasonal scale. In spite of the fact that the Persian Gulf SSTs did not exhibit any significant positive trend during the summers or autumns for either 1950-1969 or 1970-1989 periods, the trend abruptly increased during the 1990-2009 period for these two seasons.

کلیدواژه‌ها [English]

  • Trend
  • sea surface temperature
  • Climate change
  • linear regression
  • north-west of the Indian Ocean
  • Persian Gulf
حسن‌زاده، ا.، و خدابخش، ح.، 1381،  مطالعه دمای سطح آب و انتقال اکمن در ناحیه خلیج فارس: مجله پژوهش فیزیک ایران، 3(3)، 213-222.
ناظم‌السادات، س. م. ج.، 1388، مبانی هوا و اقلیم شناسی، چاپ اول: مرکز نشر دانشگاهی، تهران، 440 صفحه.
ناظم‌السادات، س. م. ج.، و قاسمی، ا.، 1383، تأثیر نوسان‌‌های دمای سطح آب دریای خزر بر بارش فصل‌های زمستان و بهار نواحی شمالی و جنوب غربی ایران: مجله علوم و فنون کشاورزی و منابع طبیعی، 8(4)، 1-15.
ناظم‌السادات، س. م. ج.، و شیروانی، ا.، 1384، پیش بینی دمای سطح آب خلیج فارس با استفاده از رگرسیون چندگانه و تحلیل مولفه اصلی: مجله علوم و فنون کشاورزی و منابع طبیعی، 9(3)، 1-11.
Bancroft, A. B., and Hobbs,G., 1986, Distribution of Kriging error and stationarity of the variogram in a coal property: Mathematical Geology, 8(7), 635-651
Deser, C., Phillips, A. S., and Alexander, M. A., 2010, Twentieth century tropical sea surface temperature trends revisited: Geophysical Research Letters, 37, 55-61.
Enfield, D. B., 1996, Relationships of inter-American rainfall to tropical Atlantic and pacific SST variability: Geophysical Research Letters, 23, 3305-3308 .
Goddard, L., Mason, S. J., and Zebiak, S. E., Ropelewski, C. F., Basher, R., and Cane, M. N., 2001, Current approaches to seasonal interannual climate predictions: Int. J. Climatol., 21, 1111-1152.
Gombay, E., and Horvath, L., 1996, On the rate of approximations for maximum likelihood tests in change-point models: J. Mult. Anal., 56, 120-152.
Heburn, G. W., 1985, Effect of wind versus hydraulic forcing on the dynamics of the western Mediterranean Sea: Rapp. Comm. Int. Mer Medit., 29(3), 65-67.
Jones, S. R., and Jeffs, T. M., 1991, Near surface sea temperature in coastal waters of the North Sea, English chaneland Irish Sea, Data Report MAFF Direct, Fish, Res., Lowestoft, 24, 70pp.
Levitus, S., 1982, Climatology Atlas of WorldOcean, NOAA Profesional Paper, 13, US. Gov. Printing Office, 173pp.
Lockwood, J. G., 2000, Abrupt and sudden climatic transitions and fluctuations: a review 2000: Int. J. Climatol., 21, 1153-1179.
Nazemosadat, M. J., 1998, The Persian Gulf sea surface temperature as a drought  diagnostic for southern parts of Iran: Drouth News Network, 10, 12-14. 
Nazemosadat, M. J., Cordery, I., and Eslamian, S., 1995, The impact of the Persian Gulf Sea surface temperature on Iranian rainfall, Proceedings of the Iranian Water Resource Management Conference, Esfahan, Iran, 809-819.
Nazemosadat, M. J., Samani, N., Barry, D. A., and Molaii Nikoo, M., 2006, ENSO forcing on climate change in Iran: Precipitation analysis:  Iranian Journal of Science and Technology, 30(4), 555-565.
Nazemosadat, M. J., and Ghaedamini, H., 2010, On the relationships between the Madden Julian Oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmospheric circulation analysis, J. Climate, 23, 887–904.
Salta, J., and Pascual, J., 2007, Climatological trend from 32 years of observations at L'Estartit station, near the Catalan coast (NW Mediterranean): Rapp. Comm. Int. Mer Medit., 38, 196pp.
Schao, S .Y., Kao, T. W., and Al-Hajr, K. R., 1992, A numerical investigation of circulation in the Arabian Gulf: Journal of Geophysical Research, 97, 11219-11236.
Schruben, L. W., 1982, Detecting initialization bias in simulation output: Operations Research, 30, 569-590.
Singh, O. P., and Alam Sarker, M., 2003, Recent sea surface temperature variability in the coastal regions of the north Indian Ocean: Indian Journal of Marine Sciences, 32(1), 7-13.
Smith, T. M., and Reynolds, R. W., 2004, Improved Extended Reconstruction of SST (1854-1997): J. Climate, 17, 2466-2477.
Zveryaev, I. I., and Arkhipkin, A. V., 2008,Structure of climatic variability of the Mediterranean sea surface temperature: J. Russian Meteorology and Hydrology, 33(6), 377-382.